Metabolism of Purine & Pyrimidine Nucleotides

Biomedical importance

- Biosynthesis is strongly regulated to insure their production in appropriate <u>Quantities and at times</u> suitable to their physiologic demand.
- Genetic disease of
 Purine metabolism:

Gout – Lecsh-Nyhan syndrome-Adenosine deaminase and purine nucleotide phosphorylase deficiency.

Pyrimidine metabolism: Orotic aciduria.

Purines and Pyrimidines are dietarily nonessential

- Synthesized from amphibolic intermediates.
- Fate of Ingested nucleic acids (dietarily nonessential): Nucleic acid →Nucleotides (Intestinal tract)

↓ Purine and Pyrimidine bases ↓ Uric acid (absorbed or excreted in urine)

 Ingested nucleotides cannot be incorporated , Injected compounds can be incorporated.

Biosynthesis of Purine nucleotides

- Synthesis from amphibolic intermediates.
- Phosphoribosylation of purines.
- Phosphorylation of purine nucleosides.

the purine ring. Atoms 4, 5, and 7 (blue highlight) derive from glycine.

IMP is synthesized from amphibolic intermediates

Figure 34–2. Purine biosynthesis from ribose 5-phosphate and ATP. See text for explanations ($\bigcirc PO_{-}^{2-}$ or PO_{-}^{-})

FIGURE 33-3 Conversion of IMP to AMP and GMP.

Conversion of IMP to AMP and GMP

296 / CHAPTER 34

Figure 34–3. Conversion of IMP to AMP and GMP.

Intermediates and precursors of purine biosynthesis:

- Ribose 5 phosphate
- ATP

-Aspartate

-CO2

- Glutamine
- Glycine
- N5,N10 methenyl H4Folate
- N10Formyl H4 Folate

Precursors for conversion of IMP to AMP:

Aspartate

Precursors for conversion of IMP to GMP:

NAD – Glutamine.

GMP

Purine synthesis from Ribose 5 Phosphate and ATP

- Importance of TetrahydroFolate
- Anti Folate drugs and Glutamine Analogs are used in cancer chemotherapy.

Salvage reactions convert Purines and their Nucleosides to Mononucleotides

PosphoRibosylation of PurinesandPhosphorylation of Purine Nucleosides are called Salvation Reactions

1.PhosphoRibosylation of Purines:

 The Enzyme Ribosyl Transferase catalyses Adenine → AMP Hypoxanthine → IMP Guanine → GMP

 PR-PP PPi <u>2-Phosphorylation of a Purine</u> <u>Ribonucleoside by ATP→Purine</u> <u>Ribonucleotide+ADP</u>

 The Enzyme Adenosine Kinase catalyzes: Adenosine → AMP d'Adenosine→d'AMP
 the Enzyme deoxy Cytidine Kinase catalyzes: d`Cytidine →d`CMP 2`deoxyGuanosine →dGMP

IGURE 33-4 Phosphoribosylation of adenine, hypoxanthine, ad guanine to form AMP, IMP, and GMP, respectively.

<u>Where</u> And <u>Why</u> Does Salvage Reaction occur:

Where? In the **liver**....it provides Purine and Purine Nucleosides for Salvage reactions.

Why? To Provide Nucleotides for tissues incapable of synthesizing them.

Examples:

Human brain-Erythrocytes-

Polymorphonuclear Leukocytes.

Hepatic Purine Biosynthesis is stringently regulated

lines represent chemical flow. Broken red lines represent feedback inhibition by intermediates of the pathway.

AMP & GMP Feedback Regulate their Formation from IMP

Reduction of Ribonucleoside Diphosphate forms DeoxyRibonucleoside DiPhosphates

The Enzyme responsible is:
 Ribonucleotide Reductase complex

2'-deoxyribonucleoside diphosphates.

Biosynthesis of Pyrimidine Nucleotides

- The main enzyme is Carbamoyl Phosphate Synthase II (A cytosolic enzyme.
- Carbamoyl phosphate synthase I is Mitochondrial enzyme involved in Urea cycle.
- The main precursors for synthesis are:Glutamine,ATP,CO2,PRPP,N5 N10Methylene H4 Folate(for TMP only).

The DeoxyRibonucleosides of Uracil and Cytosine Are Salvaged

Uridine Ribonucleoside

Cytidine Ribonucleoside

Thymidine deoxyribonucleoside

Deoxy Citidine

All converted to their Nucleotides Tri Phosphate by the enzyme ATP dependent phosphoryl Transferase (Kinases).

Methotrexate blocks Reduction of Dihydrofolate dUMP TMP -12 Folate

H₂ Folate H4 Folate

H4Fo

dihydrofolate Reductase Methotrexate inhibits diHydroFolate Reductase Regulation of Pyrimidine Nucleotide Biosynthesis

- Gene Expression & Enzyme activity both are regulated
- Purine & Pyrimidine Nucleotide
 Biosynthesis Are Coordinately Regulated

Catabolism of Purines

- Humans catabolize Purines to Uric Acid
- In Mammals other than higher primates There exists an enzyme <u>Uricase</u> converts Uric Acid → Allantoin.
- Humans lack Uricase.

Catabolism of purine nucleotides to Uric acid

Disorders of Purine Catabolism

• <u>Gout:</u>

A Genetic defect in PRPP Synthase causes an overproduction of Purine catabolites(Uric Acid) ,or abnormalities of renal handling of UA.

Lesh-Nyhan syndrome:

A defect in hypoxanthine –guanine phosphoribosyl Transferase (purine salvage enzyme) \rightarrow overproduction of PRPP \rightarrow overproduction of purine.

Von Geirkes Disease:

Deficiency of Glucose 6 phosphatase \rightarrow increase in ribose 5 p \rightarrow increase of PRPP.

Hypouricemia:

Deficiency of xanthine oxidase (converts xanthine \rightarrow UA)

Adenosine Deaminase & Purine Nucleoside Phosphorylase Deficiency:

Associated with an immunodeficiency disease (accumulation of dGTP, dATP) \rightarrow inhibition of Ribonucleotide Reductase \rightarrow depleting cells of DNA precursors.

Catabolism of Pyrimidines

- Catabolism produces water-soluble metabolites:
- **Pseudouridine is excreted unchanged** No human enzyme catalyzes hydrolysis or phosphorylysis of pseudouridine,therefor it is excreted unchanged.
- Overproduction of pyrimidine catabolites is only rarely associated with clinically significant abnormalities:

Disorders of Folate and vit B12 \rightarrow deficiency of TMP.

Orotic aciduria:

Reye syndrome: Damaged mitichondria \rightarrow unable to utilize carbamoyle phosphate \rightarrow available for cytosolic overproduction of Orotic acid.

Type I Orotic aciduria: deficiency of orotatephospho ribosyl transferase and orotidylate decarboxylase.

Type 2 Orotic Aciduria: deficiency of Orotidylate decarboxylase.

- Deficiency of a urea cycle Enzyme results in excretion of pyrimidine precursors:
- Drugs may precipitate Orotic Aciduria:

Catabolism of pyrimidines

Defective Enzyme	Enzyme Catalog Number	OMIM Reference	Major Signs and Symptoms	Figure and Reaction
Purine Metabolism				and the
Hypoxanthine-guanine phosphoribosyl transferase	2.4.2.8	308000	Lesch-Nyhan syndrome. Uricemia, self-mutilation	33-4 ②
PRPP synthase	2.7.6.1	311860	Gout: gouty arthritis	33-20
Adenosine dearninase	3.5.4.6	102700	Severely compromised immune system	33-1 ()
Purine nucleoside phosphorylase	2421	164050	Autoimmune disorders; benign and opportunistic infections	33-11②
Pyrimidine Metabolism				
Dihydropyrimidine dehydrogenase	13.12	274270	Can develop toxicity to 5-fluorouracil, also a substrate for this dehydrogenase	33-12 ②
Orotate phosphoribosyl transferase and orotidylic acid decarboxylase	2.4.2.10 and 4.1.1.23	258900	Orotic acid aciduria type 1; megaloblastic anemia	33-9 (5) and (6)
Orotidylic acid decarboxylase	4.1.1.23	258920	Orotic acid aciduria type 2	33-96